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Quaternionic solutions for the relativistic Kepler problem with 
magnetic chargest 

S FENEUILLE and A CRUBELLIER 
Laboratoire Aime Cotton, CNRS 11, Orsay, Essonne, France 

MS received 17 November 1971 

Abstract. The relativistic Kepler problem in Dirac form is solved by means of a quaternionic 
method for particles having both electric and magnetic charges. The variables in spherical 
coordinates can be separated in a simple way and the results obtained are similar to those 
which are valid for the usual hydrogen atom. 

1. Introduction 

Although the concept of charged magnetic monopoles was introduced many years ago 
(Dirac 1931) in quantum theory, the relativistic Kepler problem with magnetic charges 
has been considered in detail only recently. First, Berrondo and McIntosh (1970) 
investigated the symmetry and degeneracy of the Dirac equation for a Coulomb potmtial 
with a fixed centre bearing both electric and magnetic charges; the formalism used was 
closely related to the ‘symmetric’ Hamiltonian of Biedenharn (1962) and Biedenharn 
and Swamy (1964) and the accidental doubling degeneracy was deduced in a way using 
essentially the algebra of Malkin and Manko (1969). More recently, Barut and Bornzin 
(1970) gave a S0(4,2) formulation of a similar problem and deduced the spectrum from 
group theoretical considerations only. These formalisms are very efficient in exhibiting 
the symmetry properties of the problem and they provide results applicable to the theory 
of strong interaction phenomena based on the concept of magnetic charges (Barut 1971) 
but they do not allow us to put the wavefunctions into a convenient form for practical 
calculations. Now, it was shown recently by Hautot (1970) that the use of quaternions 
allows a direct integration of the Dirac equation for the hydrogen atom, by separation 
of variables. The object of this paper is to show that the quaternionic method is well 
adapted to the study of the relativistic Kepler problem with magnetic charges, and that 
it allows us to deduce the corresponding wavefunctions from those of the well known 
ordinary relativistic Kepler problem in a simple way. 

2. Separation of variables 

If we consider the problem of a particle with mass tn, electric charge e,  and magnetic 
charge g ,  moving in the field of another particle with infinite mass, electric charge e2 
and magnetic charge g, situated at the origin, the corresponding Dirac equation can 

t After this paper was written, we received a preprint of A Hautot (to be published in J nmrh Phi \ ) in which 
d particular case of this problem was treated 
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be written (Barut and Bornzin 1970) 

c(a.z)+y,mc2-- I) = &!I ( "I r 

where 

= P - P W  

P = elg2-gle2 

" = -(e,e,+g,g,) 
r x n(r . n)  

r{r2 - (r . n)2} 
D(r) = 

n being an arbitrary unit vector. 
Using the notations of Hautot (1970), equation (1) in quaternionic form reads 

= -uQ(r) 

where 

IC/ = exp{ -(J - l /h )Et ju  

V, = id,+jd,+kd, 

and 

D, = iD,+jD,+kD,. 
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(1) 

As in the case of the usual hydrogen atom (,U = 0), it is convenient to use spherical 
coordinates which are separable ; then 

and if we choose n parallel to the z axis 

e - k #  D, = -jT (4) 

Following the method described by Hautot (1970), we find that the separation ofvariables 
holds in the form 

U exp{*(k + 2J - lM)$} ejei20(b')R(r) ( 5 )  

if [e, k] = 0, which implies that 0 = 0 , + k 0 ,  ; since u(r, e,$) = u(r, e,$ + 2n), M must 
be a half-odd integer and the equations satisfied respectively by @(e) and R(r) are 

j - + - c o t 8 0  -ic E c o s b ' + M  0 = @ A  (: f ) s m e  (cii ) 
dR 
dr 

r -  -rkRQ = ( A -  l)R (7) 
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where the quaternion A ,  which plays the role of a separation constant, is equal to 
ai+bj, where a and b are scalar quantities; however we can put b = 0 without loss of 
generality. 

3. Quaternionic solutions 

3.1. Angular variables 

Since 0 = 0, +kO,,  equation (6) is equivalent to a system of two scalar coupled 
differential equations, and this system can be expressed in real form by putting 

Y, = -O1+J - lO ,  

Y1 = 1(@1+4’-1@,) 

and 
ti = Tad-1. / 

More precisely, Yl and Y, satisfy the following equations : 

d 

By decoupling the system (8), we obtain the second order differential equations 

X = O  i = 1 , 4  
(M - K~ cos e ) 2  

sin2e 
d2  

where 

and 

(9) 

Equation (9) is exactly the same as encountered in the symmetric top problem, but here, 
neither M nor K is an integer. The easiest way to solve it is to use the factorization 
method (A-type); in fact, the results obtained by lnfeld and Hull (1951) for the symmetric 
top are still valid, and we can get quadratically integrable solutions only if K IfI M is an 
integer. M being a half-odd integer, equations (9) show that p/ch must be an integer 
which is nothing else but the Dirac quantization condition (Dirac 1948 and Hurst 1968). 
In this case, the solutions can be expressed in terms of Jacobi polynomials and are 
labelled by a quantum number j defined by 
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M and K being half-odd integers, j must be a positive half-odd integer. For a given 
value o f j ,  there are two distinct solutions for 0 according to the sign of K .  More pre- 
cisely, changing the sign of IC is equivalent to multiplying 0 by k J - 1. 

3.2. Radial variables 

Formally, equation (7) is the same as for the usual hydrogen atom ( p  = 0); the only 
difference is that in general K = -a,,/- 1 is no longer an integer. However this point 
is not essential in the resolution of radial equations obtained for the usual hydrogen 
atom (Bethe and Salpeter 1957), and all the results we need can be derived from that 
case by replacing (j +i)2 by +i)2 -(p/ch)’ in the formulae. In particular it allows us 
to find the energy spectrum 

E, = mc2{1+(2)2[n+{ (i+j2-(:)2- (42}1’2]-2}-1’2 (11) 

for a small coupling constant 

if g,g2 is not zero, (U/&)’ is large (> 137/4) then, we must start from the results given by 
Case (1950). 

In any case, as for the usual hydrogen atom, the radial part of the wavefunction can 
be written (Hautot 1970) 

R = (RI + iR2)(1 - j )  (12) 

where R ,  and R, are scalar quantities; the system of radial equations may be expressed 
in real form by putting 

G = r(R1 +,,/- 1R2) 

F = -r(R2+J-1R,) 

we obtain the usual system of two coupled differential equations (Bethe and Salpeter 
1957) 

d F  K F = l ( ( m c 2 - E ) - : ) G  
dr r ch 

(13) 

where F and G are respectively the small and the large component, but here K is not 
necessarily an integer. 

4. Invariants 

It is well known (Berrondo and McIntosh 1970) that the three components of the angular 
momentum operator 

,.y = 9 + S  (14) 
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where 2’ = (r x x ) - ( p / c r ) r ,  commute with the Dirac Hamiltonian for the considered 
system. ] $ I 2  and f z  are compatible invariants and we can show that the wavefunctions 
obtained above are eigenfunctions for these two operators. In quaternionic form 
(Hautot 1970) 

s, = i l h ,  - I  s, = $ jh ,  - 1 S z  = j k h ,  - 1  (15) 
therefore 

# z =  - h  - 12,++kA,/ - 1 (16) 

and 

f z h G z , w  = M w n , K , 2 % ’ w .  (17)  

Moreover, if, following Hautot (1970). we define 2‘; by 

Y3 = iYx+JY) + h Y Z  

i t  is clear that 

1x12 = -Y3Y3+2A, -1Y,+#2. 

Now 

From equations (6) and (12) 

I‘ 
LP31C/n,k,2,w = h,  - l$n,K,z,v(I + k ~ ,  - I)--ke‘# e - J“e -k@z *n,k / . \ I  c 

and consequently 

The O(3) invariance symmetry generated by $ provides no information about the 
radial part of the wavefunctions. However. the use of the broken symmetry O(2, 1 )  
(Bacry and Richard 1967, Crubellier and Feneuille 1971) for the radial wave equations 
(13) is still possible even if p is not zero, because the fact that K is an integer for the usual 
hydrogen atom is not essential in this theory. Thus, all the results obtained by this 
method and concerning especially radial matrix elements are still valid provided that 
we replace ++) by { ( j + ~ ) Z - ( p / ~ h ) Z ) ” 2 .  
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